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a b s t r a c t

Buoyant laminar flow in a square lid-driven enclosure is analysed. The vertical sides are kept isothermal
at different temperatures, while the horizontal sides are insulated. Assisting mixed convection flow due
to uniform motion of the top side is considered. The governing balance equations are solved numerically
by employing a Galerkin finite element method. The effects of viscous dissipation and pressure work are
taken into account. In order to investigate the influence of these effects, the Nusselt number is evaluated
with respect to the heat fluxes at both vertical sides, for different values of the Rayleigh number and of
the Péclet number based on the lid velocity. Two sample fluids are considered: a gas and a highly viscous
liquid. In the framework of the Oberbeck–Boussinesq approximation, a comparison is made between
three different energy balance models: (A) enthalpy formulation (pressure work and viscous dissipation
are included); (B) internal-energy formulation (viscous dissipation is included); (C) both pressure work
and viscous dissipation are neglected. It is shown that, in the absence of a lid motion, the three models
yield substantially the same predictions. On the other hand, when the forced flow induced by the lid
motion becomes sufficiently large, the three models yield discrepant results, thus implying that pressure
work and viscous dissipation are not negligible. Moreover, it is shown that, in this case, model (A) yields
unphysical results, while model (B) leads to reasonable predictions.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of convection in a two-dimensional laterally
heated square cavity (with thermally insulated top and bottom)
is of great interest to the computational fluid dynamics community
(e.g. see de Vahl Davis [1]) as well as being applicable to a wide
variety of practical problems. A paper by Mallinson et al. [2] and
an associated conference poster presented by Mallinson has stim-
ulated a flurry of recent work on this problem [3–6]. Mallinson
raised the question of the effect of viscous dissipation, which is
equivalent to a volumetric heat source, on the energy balance
and the entropy budget. Costa [3,4] went a step further by claiming
that if the viscous dissipation term is taken into account in the en-
ergy balance, also the pressure work term needs to be taken into
account. This approach has strong implications and, in particular,
recognizes a central role of the pressure work contribution in the
energy balance of flows with viscous dissipation. This point has
been discussed in Nield [5] and in Barletta [6]. The main objection
to the arguments presented in [3,4] is based on known results in
the case of forced convection, which is a limiting case of mixed
ll rights reserved.
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convection. With forced convection it is well known [7] that it is
possible to have a situation where there is substantial viscous dis-
sipation but negligible pressure work. These known results imply
that the viscous dissipation effects may be important, despite a
negligible contribution of the pressure work, also in the case of
buoyant flows. Otherwise, one would have a substantial jump in
the difference between global viscous dissipation and global pres-
sure work as soon as one added some buoyancy, no matter how
small the amount.

It is hypothesized by the present authors that the balance be-
tween the work done by pressure forces and the energy dissipated
by viscous effects does not hold in general. As a step towards test-
ing that hypothesis, we have examined a laterally heated box
closed with respect to mass flow and with a moving lid, so that
the convection is driven by a mixture of natural convection in-
duced by buoyancy and forced convection induced by the moving
boundary.

2. Mathematical model

Let us consider a 2D square enclosure with adiabatic horizontal
sides and isothermal vertical sides at different temperatures
T0 � DT=2 and T0 þ DT=2, with DT > 0 (see Fig. 1). The top boundary
is in steady horizontal motion with velocity u0. In the stationary
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Nomenclature

cp specific heat at constant pressure
cv specific heat at constant volume
Ec Eckert number, a2=ðcp DT L2Þ
Ee expansion energy number, Eq. (21)
g modulus of acceleration due to gravity
Ge Gebhart number, Eq. (21)
k thermal conductivity
L side length of the square cavity
Nu�;Nuþ average Nusselt numbers, Eq. (22)
p pressure
P dimensionless pressure, Eq. (10)
Pe Péclet number, Eq. (21)
Pr Prandtl number, Eq. (21)
Ra Rayleigh number, Eq. (11)
Rb Rayleigh–Boussinesq number, Eq. (21)
u0 lid velocity
u;v velocity x-component and y-component
U;V dimensionless velocity X-component and Y-component,

Eq. (10)

Umax maximum value of U in the line X ¼ 0
T temperature
T0 average temperature
Tc; Th boundary temperatures
x; y Cartesian coordinates
X;Y dimensionless Cartesian coordinates, Eq. (10)

Greek symbols
a thermal diffusivity, k=ðqcpÞ or k=ðqcv Þ
b volumetric coefficient of thermal expansion
DT difference between the temperatures of the vertical

sides
h dimensionless temperature, Eq. (10)
l dynamic viscosity
m kinematic viscosity
q mass density
XPW pressure work parameter, Eq. (23)
XVD viscous dissipation parameter, Eq. (24)
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natural convection regime, according to the Oberbeck–Boussinesq
approximation, the local mass, momentum and energy balance
equations are given by
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where the fluid properties q;l; b; cp; k are considered as constants
evaluated at the reference temperature T0.
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Fig. 1. Drawing of the square cavity.
Boundary conditions are:

u ¼ v ¼ 0 at x ¼ � L
2

and y ¼ � L
2
; ð5Þ

u ¼ u0 and v ¼ 0 at y ¼ L
2
; ð6Þ

T ¼ T0 þ
DT
2

at x ¼ � L
2
; ð7Þ

T ¼ T0 �
DT
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at x ¼ L
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; ð8Þ
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2.1. Dimensionless equations

Let us define the dimensionless quantities

U ¼ uL
a
; V ¼ v L

a
; X ¼ x

L
; Y ¼ y

L
;

P ¼ ðpþ qg yÞL2

qa2 ; h ¼ Ra
T � T0

DT
; ð10Þ

where

Ra ¼ g bDT L3

am
: ð11Þ

Then, Eqs. (1)–(9) can be rewritten as
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U ¼ V ¼ 0 at X ¼ � 1
2

and Y ¼ � 1
2
; ð16Þ

U ¼ Pe and V ¼ 0 at Y ¼ 1
2
; ð17Þ

h ¼ Ra
2

at X ¼ � 1
2
; ð18Þ

h ¼ �Ra
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at X ¼ 1
2
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In Eqs. (12)–(20), the dimensionless parameters

Pr ¼ m
a
; Pe ¼ u0 L

a
; Ee ¼ ba2

cp L2 ; Rb ¼ Ra
T0

DT
; Ge ¼ bg L

cp
;

ð21Þ

have been used. Here Pr, Pe and Ge are the familiar Prandtl, Péclet
and Gebhart numbers. We propose that Rb be called the Ray-
leigh–Boussinesq number. We also suggest that Ee be called the
expansion energy number. We have in mind that a=L is a diffusion
velocity, so that ða=LÞ2 may be regarded as a diffusion energy per
unit mass, while cp=b may be regarded as an expansion energy
per unit mass.

The importance in the present context of the choice of the ref-
erence scales used in scaling the physical variables has been
emphasized by Nield [5]. In particular, Nield noted that Costa in
Refs. [3] and [4] had scaled his velocity in terms of a=L, the conduc-
tion scale. Nield argued that the appropriate velocity scale for
strong convection in a porous medium was ða=LÞRa1=2 while that
for weak convection was ða=LÞRa. Since by weak convection we
mean Ra ¼ Oð1Þ, the scale for weak convection is effectively the
same as that for conduction. In the present problem, the velocity
of the lid, namely u0, is available as an alternative velocity scale.
We have chosen a=L as our velocity scale for ease of comparison
with the results obtained by other authors. The ratio of the two
scales now enters our mixed convection problem as the Péclet
number, Pe ¼ u0L=a. A small value of Pe/Ra corresponds to the nat-
ural convection limit.

The average Nusselt number can be evaluated both at the left
vertical side X ¼ �1=2 and at the right vertical side X ¼ 1=2,
namely
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The overall contribution of the effects of pressure work and vis-
cous dissipation can be evaluated by defining the dimensionless
quantities,
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A relationship between Nu�;Nuþ;XPW and XVD can be obtained
by integrating both sides of Eq. (15) over the whole enclosure, tak-
ing into account Eq. (12), applying Gauss theorem, utilizing the
condition of zero normal component of velocity on the four bound-
ary sides. Thus, from Eq. (22), one obtains

ðNuþ � Nu�ÞRa ¼ XPW þXVD: ð25Þ

In the case Pe ¼ 0, no work input is supplied to the fluid. Then,
the first law of thermodynamics prescribes that, in the stationary
regime, no net heat flux can be exchanged through the enclosure
boundary. This conclusion allows one to infer that the right hand
side of Eq. (25) should be zero. As a consequence, Nu� and Nuþ
should be coincident and XPW ¼ �XVD. However, the Oberbeck–
Boussinesq approximation implies imperfect local balances and,
hence, may yield a lack of compensation between the heat fluxes
on the two isothermal sides [6]. In this respect, it is worth men-
tioning that Eq. (25) is expected to be satisfied by the numerical
solution within its accuracy. On the other hand, the requirement
of the first law, Nu� ¼ Nuþ, may not be satisfied since the local en-
ergy balance is not an exact one.

In the case Pe – 0, work is supplied to the fluid through
the moving top boundary. By the first law of thermodynamics,
this work implies different heat fluxes through the vertical
isothermal boundaries and, hence, a nonvanishing difference
Nuþ � Nu�.

2.2. Chandrasekhar’s approach

A widely employed simplification of the energy balance consists
in neglecting both the viscous dissipation effect and the pressure
work effect. This approach is recovered when one sets Ee ¼ 0 and
Ge ¼ 0 in Eq. (15).

A different statement of the Oberbeck–Boussinesq approxima-
tion is that proposed by Chandrasekhar [8] and recently discussed
by Barletta [6]. Chandrasekhar’s approach to the Oberbeck–Bous-
sinesq approximation is based on the internal-energy formulation
of the local energy balance. As explained in several textbooks on
convective heat transfer (see for instance Arpaci and Larsen [9]),
there are two possible formulations of the local energy balance
in a fluid. The first is the enthalpy formulation, based on the spe-
cific heat at constant pressure cp and, according to the Oberbeck–
Boussinesq approximation, is expressed by our Eq. (4). The second
is the internal-energy formulation, based on the specific heat at
constant volume cv and, according to the Oberbeck–Boussinesq
approximation, is expressed by
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The dimensionless counterpart of Eq. (26) is
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provided that the dimensionless parameters defined in Eq. (21) are
rearranged by introducing cv instead of cp and redefining the ther-
mal diffusivity a accordingly. Interestingly enough, Eq. (26) is free
of any contribution due to the pressure work from the very begin-
ning, by simply claiming that the flow field is solenoidal as implied
by the Oberbeck–Boussinesq approximation.

It must be mentioned that the formulation expressed by Eq.
(26) is supported by the discussion of the energy balance for buoy-
ant flows carried out by Landau and Lifshitz [10] and by Bejan [11],
with an important difference: the specific heat is not cv but cp.
Although important, this difference will not influence the compar-
ison between the predictions due to Eq. (4) and those due to Eq.
(26) carried out in the following sections. In fact, the use of either
cp or cv becomes hidden in the dimensionless Eq. (27). Moreover,
the really crucial feature is that Eq. (27) contains the source term



Table 2
Values of Nu� and Nuþ for a gas in a thermally driven enclosure ðPe ¼ 0Þ.

Ra Eq. (29) Eq. (29), no pressure work Ge ¼ 0 ¼ Ee

Nu� Nuþ Nu� Nuþ Nu� Nuþ

102 1.0548 1.0548 1.0015 1.0015 1.0015 1.0015
103 1.1604 1.1604 1.1178 1.1178 1.1178 1.1178
104 2.2538 2.2538 2.2448 2.2448 2.2448 2.2448
105 4.5235 4.5235 4.5216 4.5217 4.5216 4.5216
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due to the viscous dissipation, but not the source term due to the
pressure work.

Obviously, by employing Eqs. (27) and (25) would be replaced
by

ðNuþ � Nu�ÞRa ¼ XVD: ð28Þ

Eq. (28) implies that, in every case, Nuþ > Nu� as XVD is a posi-
tive quantity unless the fluid is at rest.

2.3. Ranges of the parameters

Among the six governing parameters defined in Eqs. (11) and
(21), only Ra and Pe are influenced by the boundary conditions,
namely by the values of u0 and DT. The other four parameters,
Pr, Ge, Rb, Ee, depend uniquely on the reference temperature T0,
on the width of the enclosure and on the properties of the fluid.
In the following, different convection regimes are investigated by
considering different values of the pair (Ra,Pe). On the other hand,
the values of Pr, Ge, Rb, Ee will be fixed according to two possible
sample cases:

Gas : Pr¼0:71; Ge¼10�5; PrRb¼107; Ee¼10�12; ð29Þ
Highly viscous liquid : Pr¼103; Ge¼10�6; PrRb¼1011; Ee¼10�18:

ð30Þ
Table 1
Mesh independence test and comparison with benchmark results in the case
Ra ¼ 106; Pe ¼ 0; Ge ¼ 0 and Ee ¼ 0.

Number of elements Nu� Nuþ Umax

13,160 8.8261 8.8260 64.84
17,866 8.8256 8.8256 64.83
23,524 8.8254 8.8254 64.83
33,276 8.8253 8.8253 64.83
41,272 8.8253 8.8253 64.83

Results obtained by other authors
de Vahl Davis [1] 8.817 – 64.63
Le Quéré [13] 8.825 – 64.83
Syrjälä [14] 8.8251 – 64.8330
Leal et al. [15] 8.826 – 64.83

0.4 0.2
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150
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0

50

Fig. 2. Mesh independence test: plots of h versus Y at X ¼ 0, for different numbers of m
energy balance including both viscous dissipation and pressure work, Eq. (15).
The reason for prescribing round values of Pr Rb instead those of
Rb is that, for a gas, one has bT0 ¼ 1. Moreover, it is easily verified
that bT0 ¼ Pr RbEe=Ge.

In order to test the numerical method against existing bench-
mark solutions obtained in the absence of pressure work and vis-
cous dissipation, a third case will be considered with
Pr ¼ 0:71; Ee ¼ 0 and Ge ¼ 0. In this third case, the value of Rb is
unimportant since it does not appear in the governing equations.

The ranges of Ra depend on the choice of a gas or of a highly vis-
cous liquid,

Gas : 0 < Ra 6 106; ð31Þ
Highly viscous liquid : 0 < Ra 6 107; ð32Þ

while, for Pe, the range 0 6 Pe 6 103 is adopted in both cases.
0.0 0.2 0.4

Y

13160

17866

23524

33276

41272

esh elements. Data refer to a gas, Eq. (29), for Ra ¼ 1000; Pe ¼ 1000 with the local

106 8.8258 8.8258 8.8254 8.8254 8.8254 8.8254

Table 3
Values of Nu� and Nuþ for a highly viscous liquid in a thermally-driven enclosure
ðPe ¼ 0Þ.

Ra Eq. (30) Eq. (30), no pressure work Ge ¼ 0 ¼ Ee

Nu� Nuþ Nu� Nuþ Nu� Nuþ

102 1.0396 1.0396 1.0015 1.0015 1.0015 1.0015
103 1.1482 1.1482 1.1178 1.1178 1.1178 1.1178
104 2.2809 2.2809 2.2748 2.2748 2.2748 2.2748
105 4.7265 4.7265 4.7255 4.7255 4.7255 4.7255
106 9.2310 9.2310 9.2308 9.2308 9.2308 9.2308
107 17.347 17.347 17.347 17.346 17.347 17.346
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The above determination of reasonable values and ranges for
the governing parameters have been made referring to the orders
of magnitude of the physical properties of dry air and engine oil
and considering L � 10�1 m.

The special choice Pe ¼ 0 corresponds to a purely thermally dri-
ven flow.

3. Numerical procedure

The numerical solution of Eqs. (12)–(20) is obtained by a Galer-
kin finite element method (FEM). Equation-based modelling of
convective flows is available through recent commercial FEM pack-
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Fig. 3. Plots of Nu� versus Ra for a gas, Eq. (29), with increasing values of Pe. The data ref
Ge ¼ 0 ¼ Ee. The model including viscous dissipation refers to the energy balance Eq. (2
ages. Available commercial FEM software packages can solve even
rather complex problems quickly and accurately. Moreover, the
possibility of performing interactive post-processing and visualiza-
tion leads to a rather efficient analysis of the results. The FEM soft-
ware package used in the present paper is Comsol Multiphysics
(� Comsol, AB). This software handles local numerical instabilities
by adding artificial diffusion through the streamline upwind Pet-
rov–Galerkin method (SUPG) [12].

Unstructured meshes with triangular elements are used. A test
of mesh independence is performed with reference to the case of
absence of viscous dissipation and pressure work (Ee ¼ 0 and
Ge ¼ 0), with Pr ¼ 0:71; Ra ¼ 106 and Pe ¼ 0. Results are reported
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Fig. 4. Plots of h versus Y, for X ¼ �0:4 (line 1), X ¼ �0:2 (line 2), X ¼ 0 (line 3), X ¼ 0:2 (line 4), X ¼ 0:4 (line 5). Data refer to a gas, Eq. (29), for Ra ¼ 100; Pe ¼ 1000 with the
local energy balance including both viscous dissipation and pressure work, Eq. (15).

Fig. 5. Plots of h versus Y, for X ¼ �0:4 (line 1), X ¼ �0:2 (line 2), X ¼ 0 (line 3), X ¼ 0:2 (line 4), X ¼ 0:4 (line 5). Data refer to a gas, Eq. (29), for Ra ¼ 100; Pe ¼ 1000 with the
local energy balance including the effect of viscous dissipation, Eq. (27).
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in Table 1. Four meshes with increasing refinements are considered
sharing the same ratio, 3/20, between the maximum size of the
boundary elements and the maximum size of the internal ele-
ments. In Table 1, the quantities considered to test mesh indepen-
dence are Nu�;Nuþ and the maximum value of the horizontal
velocity component U evaluated on the vertical plane X ¼ 0. The
latter quantity is denoted by Umax. The comparison between the re-
sults obtained with the four meshes implies a fair mesh indepen-
dence of the numerical solution. Moreover, as it is shown in
Table 1, the results are in very good agreement with those reported
in Refs. [1,13–15].

Fig. 2 displays a mesh independence test referring to a gas, Eq.
(29), for Ra ¼ 1000 and Pe ¼ 1000, with the local energy balance
including viscous dissipation and pressure work, Eq. (15). Fig. 2
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Fig. 6. Plots of Nu� versus Ra for a liquid, Eq. (30), with increasing values of Pe. The data
to Ge ¼ 0 ¼ Ee. The model including viscous dissipation refers to the energy balance Eq
shows the plots of h versus Y at X ¼ 0, for different numbers of
mesh elements. From this figure, one can conclude that the effect
of the mesh size on the temperature distribution in the vertical
plane X ¼ 0 is definitely small.

On account of the above tests, the calculations performed in the
following were obtained by means of the mesh with 23,524 elements.

4. Discussion of the results

4.1. Thermally driven cavity ðPe ¼ 0Þ

For the results in Tables 2 and 3 we see that when Pe ¼ 0 nei-
ther viscous dissipation nor pressure work has a significant effect
on the heat transfer, for the realistic data values given in Eq. (29)
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or (30). In fact, when one substitutes the parameter values from Eq.
(29) or (30) in Eq. (15), one immediately sees that the viscous dis-
sipation term is very small. Also, the only pressure work term that
is not very small is the term RbGeV. This is the term coming from
the hydrostatic pressure gradient. From the symmetry of the
geometry, one might expect that the average value of V over the
fluid domain would be close to zero. Hence the null result might
be expected. This follows from the following reasoning. When
one drops the small terms, Eq. (15) reduces to

U
@h
@X
þ V

@h
@Y
¼ @2h

@X2 þ
@2h

@Y2 � GeRbV : ð33Þ

Then, the transformation ðX; Y;U;V ; hÞ ! ð�X;�Y;�U;�V ;�hÞ
leaves the differential Eqs. (12)–(15) and the boundary conditions
(16)–(20), with Pe ¼ 0, invariant. This means that V is antisymmet-
ric with respect to reflection about a diagonal of the square. It fol-
lows that when Eq. (33) is integrated over the square the
contribution from the last term is zero, by cancellation. In other
words, even when RbGe is large, the contribution of the pressure
work (as well as the contribution of the viscous dissipation) is neg-
ligible for the realistic parameter values given by Eq. (29) or (30).

The above arguments do not apply to the case of a lid-driven
cavity ðPe > 0Þ since, although Ge is very small, very high velocity
gradients may arise next to the lid when Pe > 0. The high-strain lo-
cal conditions can be accompanied by important viscous dissipa-
tion effects.

The reason why Costa [3] obtained a huge effect of viscous dis-
sipation and pressure work for the thermally driven square cavity
is that he considered unrealistically high values of his parameter
Ec ¼ a2=ðcp DT L2Þ. Reasonably practical values of this parameter
are of order 5� 10�11 for a gas and 3� 10�17 for an engine oil,
but instead he considered Ec ¼ 10�7;10�6;10�5.
Fig. 7. Plots of h versus Y, for X ¼ �0:4 (line 1), X ¼ �0:2 (line 2), X ¼ 0 (line 3), X ¼ 0:2 (
the local energy balance including both viscous dissipation and pressure work, Eq. (15).
4.2. Lid-driven cavity ðPe > 0Þ

Figs. 3 and 6 illustrate the behaviour of Nu� and Nuþ versus Ra
for different values of Pe. Fig. 3 refers to a gas, Eq. (29), while Fig. 6
refers to a highly viscous liquid, Eq. (30). Both figures show that the
discrepancies between the predictions of the three local energy
balance models:

(A) energy balance including both pressure work and viscous
dissipation, Eq. (15),

(B) energy balance including viscous dissipation, Eq. (27),
(C) energy balance neglecting both pressure work and viscous

dissipation, Eq. (15) with Ge ¼ 0 ¼ Ee,

become increasingly evident as Pe increases and Ra decreases. One
may easily see that, for Ra > 103, the three energy balance models
yield substantially coincident results. This means that, in the range
0 6 Pe 6 103, the effects of viscous dissipation and pressure work
are not very intense as long as Ra > 103. The latter conclusion
holds both for the gas and for the highly viscous liquid. On the
other hand, discrepancies between models (A), (B) and (C) are
especially evident when Ra ¼ 102 and Pe ¼ 103. The occurrence
of discrepancies reveals that pressure work and viscous dissipation
cannot be neglected and this certainly rules out the validity of the
predictions of model (C). Then, the question is: which model
among (A) and (B) gives more reliable predictions?

An answer to this question can be given with certainty only by
an experimental validation of the results. However, Figs. 4, 5, 7
and 8 give us an important hint. These figures display dimension-
less temperature distributions over vertical sections ðX ¼
constantÞ of the enclosure. They refer to a gas (Figs. 4 and 5) or
to a highly viscous liquid (Figs. 7 and 8). Figs. 4 and 7 are ob-
tained by using energy balance model (A), while Figs. 5 and 8
line 4), X ¼ 0:4 (line 5). Data refer to a liquid, Eq. (30), for Ra ¼ 100; Pe ¼ 1000 with



Fig. 8. Plots of h versus Y, for X ¼ �0:4 (line 1), X ¼ �0:2 (line 2), X ¼ 0 (line 3), X ¼ 0:2 (line 4), X ¼ 0:4 (line 5). Data refer to a liquid, Eq. (30), for Ra ¼ 100; Pe ¼ 1000 with
the local energy balance including the effect of viscous dissipation, Eq. (27).
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are based on model (B). The most evident information one can in-
fer from Figs. 4 and 7 is that, if one adopts model (A), then one
would predict the existence of a bulk of hot fluid placed in the
lower half of the enclosure. Apart from the evident problem of
thermal instability of this solution, due to the adverse tempera-
ture gradient, the prediction appears to be hardly conceivable
on a purely physical ground. In fact, the moving lid generates
an effect of shear stress and a consequent strain condition in
the fluid. This effect is an external forcing that acts on the system
and is responsible of the viscous heating effect. Obviously, flow in
the enclosure is not only generated by this external forcing, but
also by buoyancy. However, buoyancy does not yield in itself an
important viscous heating contribution, as it is shown by the re-
sults obtained for smaller values of Pe. The expected behaviour is
to find the hottest part of the fluid next to the moving lid for two
reasons: the stress and strain generated by the external forcing
are localized next to the lid; the buoyancy effect moves the hot
fluid to the top of the enclosure. This expected behaviour is com-
patible with the predictions of model (B) as can be inferred from
Figs. 5 and 8. Thus, one would conclude that model (B) yields re-
sults more reliable than those produced by model (A). A similar
conclusion has been recently reached by the present authors in
the analysis of the fully developed mixed convection flow in a
vertical parallel plane channel [16].

5. Conclusions

Combined forced and free flow has been studied in a square
enclosure with vertical sides kept at unequal uniform tempera-
tures and with the top lid kept in uniform motion. Assisting condi-
tions are analysed, such that the Péclet number based on the lid
velocity is non-negative. The local balance equations, expressed
according to the Oberbeck–Boussinesq approximation, have been
solved by a Galerkin finite-element method. A comparison has
been made between three different energy balance models:

(A) energy balance where both pressure work and viscous dissi-
pation are included,

(B) energy balance where viscous dissipation is included,
(C) energy balance where both pressure work and viscous dissi-

pation are neglected,

in order to show the relative importance of the effects of pressure
work and viscous dissipation, as well as to test the reliability of
these energy balance models. To compare (A), (B) and (C) through
a wide range of different conditions, two rather different sample
fluids were considered: a gas and a highly viscous liquid.

The most important results obtained by the above study are the
following.

� In the purely buoyant flow case, i.e. for a vanishing lid velocity,
discrepancies between models (A), (B) and (C) are always decid-
edly small and practically negligible. The agreement between
the different models increases with the Rayleigh number, Ra,
and becomes almost perfect for Ra > 104. As a consequence,
one is justified in neglecting pressure work and viscous dissipa-
tion in this case.

� In the assisting mixed convection flow, i.e. for a positive Péclet
number, Pe, two regimes exist: (i) a dominant-buoyancy regime,
Ra > 103, where the influence of both pressure work and viscous
dissipation is negligible and models (A), (B) and (C) yield almost
the same predictions; (ii) a dominant-forcing regime, Ra < 103

and large values of Pe (approximately greater than 102), where
viscous heating effects due to the lid shear stress become impor-
tant and models (A), (B) and (C) yield discrepant predictions. The
occurrence of important viscous heating effects in the
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dominant-forcing regime suggests an inadequacy of model (C).
Moreover, model (B) appears to yield more reasonable results
than model (A). In fact, the latter would predict lower fluid tem-
peratures in the neighbourhood of the moving upper lid. This
prediction appears unphysical as the upper part of the enclosure
should be the hottest one in a stationary regime due to the lid-
induced friction as well as to buoyancy. Although this expected
behaviour turned out to be incompatible with the results
obtained from model (A), it has been shown to be compatible
with those obtained from model (B).

On the basis of these considerations, the energy model (B) ap-
pears to be the most reliable in the analysis of the present flow
problem for all the investigated regimes. Model (B) is the Ober-
beck–Boussinesq approximation of the local energy balance
according to Chandrasekhar’s internal-energy formulation.

Challenges for future researches on this subject are: to perform
experimental investigations in order to confirm the theoretical
conclusions drawn with reference to models (A) and (B); to widen
the perspective of the present analysis by testing the behaviour for
different conditions of combined forced and free flow. In particular,
the second challenge implies the analysis of different temperature
and velocity boundary conditions as well as different geometries of
the flow system.
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